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AN ORBITING DENSITY MEASURING INSTRUMENT 

D. A. Wallace, K. W. Rogers, 

J. B. Wainwright and R. L. Chuan 

George C. Marshall Space F l igh t  Center 

Huntsvil le,  Alabama 

ABSTRACT 

A design study has been conducted f o r  a d i r e c t  a i r  dens i ty  measuring 
device t h a t  can be car r ied  onboard an orb i t ing  spacecraf t  i n  the a l t i t u d e  
range from 140 t o  280 km. 
cryopumped gas co l lec tor  of near ly  uni ty  capture coe f f i c i en t ,  using a n  
o r i f i c e  co l l ec to r  and a cooled p iezoe lec t r ic  c r y s t a l  ac t ing  as a micro- 
balance. Refr igerat ion is  by hea t  s inks pre-conditioned before launch. 
Measurement is through beat-frequency (between cryopumping c r y s t a l  and 
a va r i ab le  o s c i l l a t o r )  converted t o  DC voltage,  thence t o  telemetry.  

The re su l t i ng  design c a l l s  f o r  a f r e e  molecular 
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TECHNICAL MEMORANDUM X-53468 

AN ORBITING DENSITY MEASURING LNSTRUMJZNT 

SUMMARY 

A design study has been conducted fo r  a d i r e c t  a i r  densi ty  measuring 
device that caii 3e carried odjosid an i i r b i t i ~ g  spaczcraf t  2n t3e a l t i t u d e  
range from 140 t o  280 Ian. The resu l t ing  design calls f o r  a f r e e  molecular 
cryopuxnped gas co l l ec to r  of nearly uni ty  capture coe f f i c i en t ,  using a n  
o r i f i c e  co l l ec to r  and a cooled p iezoe lec t r ic  c r y s t a l  ac t ing  a s  a micro- 
balance. Refr igerat ion is by heat  s inks  pre-conditioned before launch. 
Measurement is through beat-frequency (between cryopumping c r y s t a l  and 
a var iab le  o s c i l l a t o r )  converted to  DC voltage,  thence t o  telemetry. 

I. INTRODUCTION 

The need f o r  the accurate  predict ion of spacecraf t  o r b i t  decay has 
generated a need f o r  an accurate  determination of the pe r t inen t  atmos- 
pher ic  property - mass densi ty ,  i.e., MSS per u n i t  volume, a t  the 
o r b i t a l  a l t i t u d e s  of concern. The most d i r e c t  way of measuring t h i s  
quant i ty  is t o  proceed by i ts  de f in i t i on ,  namely, t o  measure the mass 
of gas,  regardless  of composition, contained i n  a known ambient volume 
a t  o r b i t a l  a l t i t u d e s .  Any technique attempting to make such a d e t e d n a -  
t i on  must be capable of (1) col lect ing the MSS of gas, (2) sensing the 
col lected mass, (3) determining the volume from which the mass was col- 
lec ted ,  and ( 4 )  determining s p a t i a l  posi t ion.  

Tracking provides the s p a t i a l  pos i t ion  da ta ,  a s  well a s  spacecraf t  
ve loc i ty ;  thus, an onboard instrument must cons is  t of components capable 
of co l lec t ion ,  sensing, and volume determination. 

Ce le s t i a l  Research Corporation has conducted a f e a s i b i l i t y  and design 
study t o  develop an air densi ty  measuring instrument based pr imari ly  on 
ex i s t ing  technology, so t h a t  the successful conclusion of the study would 
lead expeditiously t o  appropriate  f l i g h t  hardware without extensive 
research and development e f f o r t s .  This repor t  documents the r e s u l t s  of 
the study on two possible  methods and recommends one f o r  hardware develop- 
ment. 

The nominal a l t i t u d e  considered i s  180 kilometers;  the vehic le  
assumed is  one s imi la r  t o  the Saturn S-IVB. 



11. BASIC SCHEME OF DIRECT DENSITOMETRY BY CRYOPUMPING 

The design approach is based upon the f a c t  t h a t  a gas co l l ec t ion  
element aligned p a r a l l e l  t o  the spacecraf t  f l i g h t  d i r e c t i o n  w i l l  sweep 
ou t  an  ambient gas volume 

Va = A u t ,  
0 

where A, is  the projected i n l e t  a r ea  of the co l l ec to r ,  u is the space- 
c r a f t  ve loc i ty ,  and t is the t i m e  of co l lec t ion .  

The co l lec t ion  t i m e  is pr imari ly  a funct ion of the mass sensing 
technique which i n  turn  is  determined by ava i l ab le  instrumentation. Two 
approaches were invest igated which more o r  less bracketed the poss ib i l -  
i t i e s ,  i n  that one instrument, a pressure transducer,  r e l i e d  on an  in t e r -  
mi t t en t  co l lec t ion  cycle with pressure amplif icat ion,  while the other  
instrument , a cryogenically cooled quartz  c r y s t a l  micro-balance , could 
continuously co l l ec t  and sense the incomi,ng mass,f lux.  Each of these 
measurement techniques had i t s  advantages and shortcomings which w i l l  be 
discussed i n  d e t a i l  i n  a l a t e r  sect ion.  

The scheme fo r  the in t e rmi t t en t  measurement technique involves the  
co l l ec t ion  of ambient gas f o r  some spec i f ied  t i m e ,  the  valving o f f  of the 
co l l ec to r  with the captured cryogenically pumped gas ,  and the vaporiza- 
t i o n  of the col lected s o l i d  condensate by warming the  co l l ec to r  t o  a 
known temperature. pa, 
knowing the  co l lec tor  gas pressure as measured by the pressure transducer,  
the co l lec tor  gas temperature, Tm, which is the same as the co l l ec to r  w a l l ,  
the gas constant,  &1, the  co l l ec to r  measurement volume, Vm, and the ambient 
col lected volume, Va ,  from equation (1). 

We can then determine the ambient mass densi ty ,  

*' 

or  

vc + v Pm 

pa Bout Rm 
- - 
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. 
I 

where 

m = combined measurement volume 
I 

c = co l l ec to r  

g = pressure gage 

a = ambient. 

Pressure can be aazplFfied tn readlly measurzble le-zels 5y adjustinent of 
the i n l e t  area, the co l l ec t ion  time, and the measurement volume. The 
measurement cycle is completed by opening the co l l ec to r  i n l e t  valve,  
thus vent ing the co l lec ted  gas out t o  the  f r e e  stream atmosphere and 
reducing the res idua l  co l l ec to r  pressure t o  a neg l ig ib l e  l eve l  r e l a t i v e  
t o  the pressure level during measurement, 

The continuous mass measurement technique is  more d i r e c t  i n  that a 
cryogenical ly  cooled quartz  c r y s t a l  cryopumps the  en ter ing  mass onto the 
resonat ing c r y s t a l  which responds t o  changes i n  system mass by a s h i f t  
i n  the resonant frequency; thus, MSS f l u x  is measured d i r e c t l y  without 
intermediate measurements o r  calculat ions , The frequency s h i f t  is 
approximately a l i n e a r  function of the co l l ec t ed  mass u n t i l  the s h i f t  
becomes approximately 1 percent of the c r y s t a l ' s  resonant frequency. 
For a c r y s t a l  i n  thickness shear resonance, the s e n s i t i v i t y ,  i.e. , the  
frequency s h i f t  w i t h  mass change, can be expressed as a funct ion of the 
resonant frequency over the appl icable  l i n e a r  range: 

Af = c cm f,2, 

where 

C = constant  

f r  = bas ic  resonant frequency 

& = col lec ted  mass 

A€ = frequency s h i f t .  

The quest ion of whether or not  the crystal need be thermally cycled t o  
clean the c r y s t a l  of accumulated condensate and thus avoid loading the 
c r y s t a l  beyond i t s  l i n e a r  response range is influenced not  only by o r b i t a l  
parameters but  a l s o  by the required co l lec tor  geometry f o r  high capture 
coe f f i c i en t s  and by the frequency s h i f t  sensing equipment. 
discussed i n  d e t a i l  i n  a l a t e r  section. 

This w i l l  be 
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The r e f r ige ra t ion  source and coolant system f o r  the cryopumping of 
the col lected mass i s  dependent upon the measurement technique. I n  the 
case of in te rmi t ten t  co l l ec t ion  and pressure ampl i f ica t ion ,  the e n t i r e  
co l lec tor  w a l l  i s  held a t  a low temperature during the co l l ec t ion  cycle 
such t h a t  condensation of the enter ing gas molecules occurs with r e s u l t a n t  
condensate vapor pressure a t  l e a s t  an  order of magnitude below the ambient 
pressure. 

For a i r  const i tuents ,  t h i s  means temperatures on the order of 20°K 
which can be obtained with e i t h e r  l iqu id  hydrogen o r  helium as the 
r e f r i g e r a t i o n  source. Once the gas sample has been co l lec ted ,  the col- 
l e c t o r  w a l l ,  which has previously been functioning as a cryopump, must 
be r a i sed  t o  a temperature l eve l  which w i l l  aga in  vaporize the gas sample 
f o r  the pressure measurement. Once the pressure measurement is made, the 
gas sample is vented, and the co l l ec to r  i s  aga in  cooled t o  approximately 
2 0 ° K  and the i n l e t  valve reopened f o r  the next gas sample. This thermal 
cycling calls f o r  a r a the r  sophis t ica ted  r e f r i g e r a t i o n  system which w i l l  
be discussed later.  

I n  the  case of continuous co l lec t ion ,  the quar tz  c r y s t a l ,  which 
becomes the cryopumping surface,  must be cooled t o  temperatures below 
2 0 ° K  t o  co l l ec t  the incoming mass. The co l l ec to r  w a l l s  are  held a t  an  
intermediate temperature - high enough t o  avoid cryopumping y e t  low 
enough t o  reduce the energy leve l  of impinging molecules t o  achieve 
eventual condensation on the c rys t a l .  This r e s u l t s  i n  a r e l a t i v e l y  
s i m p l e  coolant system, s ince  the hea t  load t o  both the co l l ec to r  w a l l s  
and the c rys t a l  remains constant throughout the f l i g h t .  
c r y s t a l  i n  th i s  manner, i.e., as a continuous mass co l l ec to r ,  i s  con- 
tingent upon the a b i l i t y  of the sensing instrumentation t o  measure per- 
centage-wise very small frequency s h i f t s ,  thus avoiding a thermal cycling 
of the c rys ta l .  

The use of the 

The individual densitometer components w i l l  be s tud ied  separa te ly  
i n  the following sec t ions ,  and an  overa l l  system e r r o r  ana lys i s  w i l l  be 
presented f o r  the recommended sys t e m  design. 

111. COLLECTION PROCESS 

A .  Molecular Flux Measurement and Capture Eff ic iency 

The i;-st s t e p  i n  t h i s  type of dens i ty  meter i s  the co l l ec t ion  
phase. 
t i o n  on a cryopump. A s  a simple example, consider a cryopump consis t ing 
of a f l a t  p a n e l  that i s  extended normal t o  the f r e e  stream (see Figure 1). 
I f  the flow is f r e e  molecular with respec t  t o  the cryopump, and i f  the 
molecules tha t  impinge on the f r o n t  face of the cryopanel a r e  condensed, 
the mass w i l l  accumulate a t  a r a t e  given by 

I n  th i s  phase the f r e e  stream molecules a r e  captured by condensa- 

8 
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, 

c 

Nc - - N, - - n, & i q i F =  
2J-T 

where 

N = molecular f l ux  (moiecuies/sec-an2) 

n = dens i ty  (molecules/cm3) 

k = Boltzmann constant 

T = temperature 

M = molecular weight 

Thus, by measuring the mass that has been co l lec ted  Over a known period 
of time (t), an average f r e e  streammolecular f l u x  can be determined. 
I f  s, T and M a r e  constant Over that time period, the average f r e e  
stream densi ty  can be determined from equation (4). 

I f  a l l  of the impinging molecules a r e  not  condensed, equation 
(4) must be modified. 
ing molecules a r e  captured, equation (4) becomes 

Assuming that only a f r a c t i o n  (cp)  of the imping- 

Nc =cpN,  

where 

cp = captured coef f ic ien t .  

Thus, i n  order t o  r e l a t e  the measured co l l ec t ion  r a t e  and the  
f r e e  stream densi ty ,  the capture coef f ic ien t  m u s t  be known, If there  is 
no in t e rac t ion  between the incoming molecules and the  molecules that 
rebounded from the p l a t e  without being captured, the  capture coe f f i c i en t  
(cp) is equal t o  the sur face  s t i ck ing  coe f f i c i en t  (a). The s t i ck ing  coef- 
f i c i e n t  is a more fundamental parameter s ince  it is the probabi l i ty  that 
an incident  molecule w i l l  be captured during a c o l l i s i o n  with a cryopump, 
I n  t h i s  appl ica t ion ,  the in t e rac t ion  between rebounding and inc ident  

5 



molecules i s  negl ig ib le  (since the mean f r e e  paths involved a r e  always 
much l a rge r  than the co l lec tor  dimensions) so that i n  the case of the 
f l a t  p l a t e ,  cp = u. 

B. Surface Sticking Coeff ic ient  

It is apparent from equations ( 4 )  and (5) t h a t ,  f o r  the simple 
f l a t  p l a t e  configuration, the uncertainty i n  the measurement of the f r e e  
stream density w i l l  be no l e s s  than the uncertainty i n  the  s t i ck ing  coef- 
f i c i e n t .  The s t i ck ing  coe f f i c i en t  i s  closely r e l a t ed  to  the c r i t i c a l  
energy leve l  (Ec). This is the average maximum energy l eve l  that an 
incident  molecule can have and s t i l l  be captured during a c o l l i s i o n  with 
the  w a l l .  It is  shown i n  Appendix A that there  is  considerable uncer- 
t a i n t y  i n  the value of the c r i t i c a l  energy leve l ,  but  i t  appears t o  be 
i n  the range of 1 t o  25 times the binding energy of the molecule. The 
binding energy (Eb) is e s s e n t i a l l y  the energy that m u s t  be expended t o  
remove a condensed molecule from the condensate layer .  This is comparable 
t o  the hea t  of vaporization or  about .07 eV f o r  a ni t rogen molecule. I n  
cont ras t ,  the energy associated with incident  molecules ( E i )  during 
o r b i t a l  conditions is about 9 eV. Since the incident  energy is 4 or 5 
times the estimated upper l i m i t  of the c r i t i c a l  energy l e v e l ,  i t  is 
doubtful that any s ign i f i can t  number of the incident  molecules w i l l  s t i c k  
on t h i s  s i m p l e  f l a t - p l a t e  cryopump. 

The negl ig ib le  value fo r  the s t i ck ing  coe f f i c i en t  of incident  
molecules with o r b i t a l  energy leve ls  represents  a fundamental l imi t a t ion  
on the f l a t - p l a t e  cryopump when operated i n  f r e e  molecular flow conditions.  

C. Capture Coeff ic ient  

While the s t ick ing  coe f f i c i en t  i s  independent of the cryopump 
configuration, the capture coe f f i c i en t  is  not,  and can be increased. 
For example, consider a cryopump that consis ts  of the i n t e r i o r  of a 
cylinder and a n  end d i s c  as shown i n  Figure 2. 
wi th  the free  stream, the directed ve loc i ty  of the molecules w i l l  cause 
most of the molecules t o  have t h e i r  f i r s t  c o l l i s i o n  deep ins ide  the tube. 
While these molecules w i l l  probably not s t i c k  on t h i s  f i r s t  co l l i s ion ,  
they w i l l  have a high probabi l i ty  of having severa l  more co l l i s ions  with 
the walls before passing back out the entrance,  
the energy l eve l  w i l l  decrease, s o  that, i f  there  a r e  enough co l l i s ions ,  
the energy leve l  w i l l  f a l l  below the c r i t i c a l  l eve l  and the molecule w i l l  
be captured, This is the same technique discussed by Wallace and Rogers 
[l] as a method fo r  maintaining a low background 
f i r i n g  a rocket motor. 

By al igning the cylinder 

During each co l l i s ion ,  

pressure while t e s t  

6 
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* 

The f e a s i b i l i t y  of t h i s  technique depends upon the energy l o s t  
per c o l l i s i o n ,  o r  the accommodation coe f f i c i en t  (a), which i s  the r a t i o  
of the energy l o s t  i n  a c o l l i s i o n  t o  the maximum energy t h a t  could be 
l o s t .  

Ei Eoff 
Ei - E w a ~ ~  

a =  

Since there  i s  a lack of experimental d a t a  f o r  the accommodation 
coe f f i c i en t  of a high energy gas impinging on a condensate layer ,  it is 
necessary t o  ex t rapola te  the ava i lab le  data using theo re t i ca l  r e s u l t s  a s  
a guide. As outl ined i n  Appendix B, t h i s  approach y ie lds  an  estimate of 
a = .77. This is assumed to  be independent of the molecular energy leve l ,  
so t ha t  the number of co l l i s ions  (v) required t o  lower the energy l eve l  
t o  the c r i t i c a l  value can be obtained from 

EC (1 - a)v = - Ei' 

When t h i s  is evaluated w i t h  Q! = .77, E, = -07 and E i  = 9, it is found 
that v = 3.3. Thus, 3 or  4 col l i s ions  would be required t o  lower the 
energy leve l  t o  the point that the molecule would s t i c k  on the next col-  
l i s i o n  with the cold wall. 

D. Cylindrical  Collector 

An ana lys i s  based on a Monte Carlo program developed by Ballance 
[ Z ]  has been made of a s e r i e s  of cy l indr ica l  cryopumps operating a t  S = Q) 

and S = 10. I n  using t h i s  approach, it is assumed that a l l  molecular 
rebounds a r e  d i f fuse ,  It is seen 
that, when S = m, there  is a continuing bene f i t  from increasing the L/D 
of the cylinder.  This is t o  be expected, s ince  f o r  S = 00, a l l  the inc ident  
molecules s t r i k e  the a f t  d i sc ;  therefore,  increasing the tube length 
increases the dis tances  the molecules must t r ave l  t o  the opening. Increas- 
ing t h i s  d i s tance  increases the probabi l i ty  that a molecule w i l l  have 
enough co l l i s ions  t o  decrease the energy below the c r i t i c a l  energy leve l  
so that it w i l l  be captured. 

Typical r e s u l t s  a r e  shown i n  Figure 3. 

Increasing the L/D of the  cylinder is a l s o  e f f e c t i v e  when S = 10 
i f  L/D i s  small. However, i f  the L/D is la rge ,  there  is no s i g n i f i c a n t  
bene f i t  from fu r the r  increases.  
coe f f i c i en t  is l imited by the loss  of those molecules that i n i t i a l l y  s t r i k e  

I n  the case of a la rge  L/D,  the capture 
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the  cy l indr ica l  w a l l s  near the i n l e t .  Since t h i s  loss  i s  e s s e n t i a l l y  
independent of the L/D of the cyl inder ,  there  is  no bene f i t  i n  increas- 
ing the r a t i o  beyond L/D = 6. From Figure 3 i t  appears t h a t  there  is an  
uncer ta in ty  of a t  least  5 - 10 percent i n  the value of the capture coef- 
f i c i e n t  f o r  a cy l indr ica l  cryopump. 

Consideration of the losses  due t o  spu t t e r ing  of the condensate 
layer  by the  high energy inc ident  molecules a l s o  increases t h i s  uncer- 
ta in ty .  N o  experimental data  are  ava i l ab le  f o r  the sput te r ing  of a n  a i r  
condensate layer by incident  a i r  molecules, bu t  a crude co r re l a t ion  (see 
Appendix C) based on r e s u l t s  of me ta l l i c  spu t t e r ing  ind ica tes  t h a t  the 
y ie ld  would be of the  order of uni ty;  i.e.,  each high energy incoming 
molecule would s p u t t e r  one condensate molecule. While i t  appears t h a t  
ne i the r  of these molecules would have s u f f i c i e n t  energy t o  cause fu r the r  
sput te r ing ,  t h i s  i n i t i a l  sput te r ing  increases the uncertainty of the 
capture  coef f ic ien t  by about 5 percent. 

Since the estimated uncertainty is q u i t e  high and becomes even 
higher i f  angle of a t t a c k  e f f e c t s  a r e  considered, t h i s  cy l ind r i ca l  con- 
f igu ra t ion  does not a p p e a r  s a t i s f a c t o r y  f o r  use i n  a n  o r b i t a l  co l l ec to r ,  
unless the uncertaint ies  can be fu r the r  reduced by some extensive experi-  
mental invest igat ion.  Since there  a r e  no f a c i l i t i e s  t h a t  can properly 
dupl ica te  o r b i t a l  conditions,  i t  i s  advisable  t o  f ind  a configurat ion 
t h a t  is  l e s s  s ens i t i ve  t o  the uncer ta in t ies  i n  s t i ck ing  coe f f i c i en t ,  
accommodation coe f f i c i en t ,  and sput te r ing  y ie ld .  

E. Or i f ice  Collector 

The capture coe f f i c i en t  based on the i n l e t  a r ea  can be fu r the r  
increased b y  using a n  i n l e t  diameter t h a t  i s  smaller than the tube diam- 
e te r  (Figure 4 ) .  For example, i f  the i n l e t  diameter is 1/3 of the tube 
diameter, the molecular loss  r a t e  is  reduced t o  about 15 percent of t h a t  
obtained when the  i n l e t  diameter is  equal t o  the tube diameter. This 
approach has the fu r the r  advantage that the co l l ec to r  is  much l e s s  sens i -  
t ive  t o  angle-of-attack e f f ec t s .  
area r e s u l t s  i n  a lower flow r a t e  i n t o  the co l l ec to r ,  so  that f o r  a f ixed 
a l t i t u d e  e i the r  the co l lec t ion  time o r  the gage s e n s i t i v i t y  must be 
increased. These f ac to r s  w i l l  be considered i n  more d e t a i l  i n  another 
sec t ion .  

On the other  hand, the reduced i n l e t  

While t h i s  reduced i n l e t  area configurat ion does decrease the 
uncer ta in t ies  i n  the  capture coe f f i c i en t ,  the  configurat ion shown i n  
Figure 5 reduces the  uncer ta in t ies  even fu r the r .  I n  t h i s  configurat ion,  
the molecules that en ter  through A. impinge on the w a l l  As t h a t  is  cold 
bu t  no t  cold enough t o  cryopump. 
with t h i s  cold w a l l  (T < 80°K), the energy level  of the molecules i s  
below the cri t ical  value and the  molecules w i l l  condense upon t h e i r  next 
c o l l i s i o n  with Ac, the cryopumping sur face  (T < 20OK). During the 

Af te r  a s u f f i c i e n t  number of co l l i s ions  
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c o l l i s i o n s  that a r e  required t o  cool the  molecules below the c r i t i c a l  
energy l eve l ,  some molecules w i l l  pass out  through the i n l e t .  I f  the 
rebounds are d i f fuse ,  t he  f r a c t i o n  of t he  molecules l o s t  per w a l l  col- 
l i s i o n  i s  Ao/As, I f  there  are v co l l i s ions  required t o  cool the mole- 
cules ,  the t o t a l  losses  during t h i s  phase w i l l  be vAo/As. 

There w i l l  a l s o  be molecular losses  during the condensation 
phase. These f r ac t iona l  losses  w i l l  be approximately equal t o  A,/Ac. 
Thus the t o t a l  i n l e t  losses during co l lec t ion  w i l l  be vAo/As + Ao/Ac. 
To minimize e r ro r s ,  it is necessary that these losses  should not exceed 
1 to  2 percent. This requlres that &!A, and vA,/A, each be about 9.01. 

The value of v depends upon the  thermal accommodation coef f ic ien t .  
This i n  turn va r i e s  with the intermolecular force  between the  gas and the  
wal l ,  and the r a t i o  of the molecular weights. I f  the system is fabr ica ted  
from aluminum, the w a l l  molecular weight is comparable to  that of the  col- 
lected gas, Furthermore, the intermolecular force between the  gas and the 
metal wall should exceed the corresponding forces between the gas and a 
condensate layer ;  thus,  the gas-wall accommodation coe f f i c i en t  should 
exceed the  gas-condensate accommodation coef f ic ien t .  Therefore, it 
should be conservative t o  use the value f o r  the accommodation coe f f i c i en t  
obtained previously (a = 0.77). It then requi res  4 co l l i s ions  t o  reduce 
the  molecular energy below the c r i t i c a l  value. This then requires  that 
f+Ao/As < 0.01. 

I n  general ,  s ince  t h i s  condition can always be m e t ,  the losses  
w i l l  be dominated by the r a t i o  Ao/Ac. 

A fur ther  advantage of t h i s  approach is the reduced p o s s i b i l i t y  
of sput te r ing  of the condensate layers. This is due t o  the i n i t i a l  col- 
l i s i o n  fo r  e s sen t i a l ly  a l l  the incoming molecules being with a cold m e t a l  
wall  and not  a condensate layer.  The p o s s i b i l i t y  f o r  sput te r ing  on sub- 
sequent co l l i s ions  is  a l s o  small because of the low average energy l eve l  
of the molecules s t r i k i n g  the condensate layer .  

While the bas ic  ana lys i s  has been made for  a spherical  configura- 
t ion ,  it may be more convenient t o  use a cy l ind r i ca l  configuration. This 
change would not  a l t e r  the r e s u l t s ,  s ince i n  general  the i n l e t  a rea  is too 
small t o  maintain the pressure gradients that a r e  required t o  prevent a 
near ly  uniform d i s t r i b u t i o n  from being establ ished.  

F. Noncondensable Gases 

A f r ac t ion  of the ambient gas sample captured by the co l lec tor  
w i l l  be made up of gas species which a r e  e i t h e r  noncondensable a t  the 
20°K cryopump temperature or  w i l l  have an unacceptably high so l id  vapor 
pressure. This f r ac t iona l  amount w i l l  cons t i t u t e  an  inaccuracy i n  the 
determination of the ambient densi ty  by the proposed mass co l l ec t ion  
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pr inc ip le .  The three gases of concern, helium, hydrogen and neon, a r e  
present i n  small amounts i n  the homosphere where the various species  a r e  
d i s t r ibu ted  according t o  a common number dens i ty-a l t i tude  p r o f i l e  due t o  
general  turbulent mixing. Above the mictopause, however, where the homo- 
sphere ends and the heterosphere starts,  changes i n  the atmospheric com- 
pos i t ion  occur a s  a r e s u l t  of g rav i t a t iona l  separa t ion  and by in t e rac t ion  
with incoming rad ia t ion .  The g rav i t a t iona l  separa t ion  tends t o  increase 
the r e l a t i v e  percentage of the l i g h t  gases i n  the atmosphere and thus 
po ten t i a l ly  aggravates the noncondensable gas problem. Unfortunately, 
almost no data a r e  ava i lab le  concerning the composition i n  the subjec t  
range of i n t e r e s t  
mates can be used t o  a r r i v e  a t  approximate e f f e c t s .  I f  100 km is con- 
se rva t ive ly  used as the mictopause and the composition is calculated f o r  
the extreme case of 280 km a l t i t u d e ,  helium is found t o  c o n s t i t u t e  0.014 
percent of the enter ing gas sample mass f l u x  and hydrogen is 0.002 per- 
cent. Neon, being a heavier gas, va r i e s  by only a small amount from the 
humosphere percentage, i.e., 0.0012 percent.  The presence of noncondens- 
ab le  gas species i n  the enter ing gas sample thus cons t i t u t e s  an extremely 
small e r r o r  in  the ambient densi ty  determination by mass col lec t ion .  

(140 t o  280 km a l t i t u d e ) ;  however, t heo re t i ca l  e s t i -  

IV. MEASUREMENT TECHNIQUE AND ACCURACY 

A.  Intermit tent  Collection 

1. Minimum Collect ion Time 

The minimum co l l ec t ion  time may be s e t  by the desired 
accuracy inmeasuring densi ty  va r i a t ions  as a funct ion of a l t i t u d e  o r  
by an t ic ipa ted  diurnal  dens i ty  var ia t ions .  In  e i t h e r  case, the optimum 
configuration of co l l ec to r  and pressure transducer should produce the 
maximum measurement pressure fo r  a given co l l ec t ion  time. From equation 
(21, 

Aout Rm Tm - - 
'rn pa vC + vg 

;his can be expressed i n  terms of the important co l lec tor  
parameters as follows: 

.9227 pa Rm Tm u t  (Do/Dc)2 
(B) , - - 

V1/3 (Lc/Dc) 2'3 pm 
g 

V 

I 
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where 

The co l l ec to r  length-to-diameter r a t i o  (Lc/Dc) and the i n l e t  
o r i f ice- to-co l lec tor  diameter r a t i o  (Do/Dc) are determined by requirements 
cf r-aptwe ccefflcie??-t; th*us, the measuri~g pressure (Pm) is  w x h i z e d  by 
the funct ion p. 
r a t i o  of 2 w i l l  y i e ld  the  maximurn pressure ,  al though volume r a t i o s  between 
1 and 4 give r e s u l t s  within 95 percent of the maximum. 

Maximizing p, we f ind  that a collector-to-gage volume 

This optimum pressure is p lo t ted  versus the co l l ec t ion  time 
In  t h i s  case, the col lec-  normalized by the o r b i t a l  period i n  Figure 6 ,  

tor-tube-to-aperture area r a t i o  is  taken as 10 with the  co l l ec to r  L/D = 5. 
This geometry gives  an estimated capture coe f f i c i en t  of 98 percent as d i s -  
cussed i n  the previous sect ion.  
encountered i n  the study (MKS Baratron gage) has a f u l l  range pressure 
measurement capab i l i t y  of 1000 microns and a volume of 18 cm3. An evalua- 
t i o n  of t he  minimum gage measurement pressure thus r e l a t e s  the minimum 
co l l ec t ion  time and the measurement a l t i t u d e ,  

The most promising pressure transducer 

To reso lve  the diurnal  dens i ty  va r i a t ion ,  the co l l ec t ion  
time should not  be g rea t e r  than one-tenth of a n  o r b i t ,  i.e., t/to < 0.1. 
Available data  ind ica t e  that the magnitude of t h i s  d iurna l  v a r i a t i o n  may 
be on the order of a f a c t o r  of two i n  measured density.  This represents  
a s i g n i f i c a n t l y  g rea t e r  densi ty  change than that encountered due t o  an  
o r b i t a l  decay. Approximately 40 orb i t s  would be required,  f o r  instance,  
t o  obta in  t h i s  v a r i a t i o n  from s t r i c t l y  a l t i t u d e  change i n  the  case of the 
S-IVB s t age  of the Saturn veh ic l e  decaying from an  i n i t i a l  180 km c i r c u l a r  
o r b i t .  Thus, the cont ro l l ing  time requirement is the d iurna l  dens i ty  
va r i a t ion ;  t h i s  l i m i t s  the co l lec t ion  time t o  not  more than 0.1 o r b i t .  

2. Al t i tude  Range 

The maximum a l t i t u d e  at which meaningful dens i ty  determina- 
t ions  can be made is r e l a t e d  to  the minimum measurement pressure.  If 
t h i s  minimum pressure  is assumed to  be 10 percent of the instrument's 
f u l l  range, i,e., approximately 100 microns, Figure 6 ind ica tes  a maxi- 
mum measurement a l t i t u d e  on the order of 220 km due t o  i n s u f f i c i e n t  
pres sure .  
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The low a l t i t u d e  l i m i t  is s e t  by gas dynamic considerations 
r a the r  than the  measuring gage, s ince  the assumption of f r e e  molecule 
flow a t  the co l lec tor  i n l e t  is bas ic  t o  the determination of the swept 
ambient gas volume. The f r e e  molecule flow l i m i t a t i o n  is  character ized 
by the diameter of the vehic le  and the mean f r e e  path f o r  co l l i s ions  
between f r ee  streammolecules and those emitted from the vehicle .  
Sca t te r ing  of the f r e e  stream molecules by the  emitted molecules begins 
t o  become s ign i f i can t ,  that is ,  grea te r  than 10 percent,  when the r a t i o  
of diameter t o  mean f r e e  path approaches uni ty .  The r a t i o  of f r e e  stream 
mean f r e e  path t o  the mean f r e e  path between emitted and f r e e  stream 
molecules a t  o r b i t a l  v e l o c i t i e s  i s  about 12.  Therefore, f o r  a vehic le  
diameter of 6 . 6  meters, the required f r e e  stream mean f r e e  path is about 
79  meters which corresponds t o  an a l t i t u d e  of 165 km. This lower l i m i t  
can be reduced to  140 km by applying f i r s t - o r d e r  cor rec t ions  t o  the 
measurements t o  account f o r  the s c a t t e r i n g  e f f e c t s  of the f r e e  stream. 
F i r s t - c o l l i s i o n  s c a t t e r i n g  ca lcu la t ions  of the type developed by Wain- 
wright and Rogers [3]  and o thers  can be made fo r  mean f r e e  path lengths 
down t o  1 / 4  of the 79 meter threshold.  The design operat ional  range of 
the instrument, then, is 220 km t o  140 km, and spans a f ac to r  of approxi- 
mately 17  i n  density.  

3. Measurement Accuracy 

The overa l l  accuracy of the measurement system w i l l  depend 
upon the confidence which can be placed i n  the primary measurements of 
pressure,  temperature, vehic le  speed and a l t i t u d e  and i n  the evaluat ion 
of c e r t a i n  systematic e f f e c t s ,  such as the co l l ec to r  capture coe f f i c i en t ,  
d i s t o r t i o n  o f  the f r e e  stream flow f i e l d  by the vehic le ,  leaking of the 
measurement chamber, e t c .  A l l  these f ac to r s  a r e  represented i n  the equa- 
t i on  used t o  ca lcu la t e  the density.  

P v + v  
- - 2- 

Pa K~ R~ T~ a0 t c p  J 

where pa i s  the  ambient dens i ty  of the atmosphere, Pm and T, a r e  the 
measured pressure and temperature i n  the co l l ec to r ,  I$,, is the gas con- 
s t a n t  of the gas i n  the co l l ec to r ,  KL is a co l l ec to r  leak f ac to r ,  
(Vc + Vg)/Ao i s  the r a t i o  of co l l ec to r  and gage volume t o  co l l ec to r  
aper ture  a r m ,  cp is the capture coe f f i c i en t ,  u is the f r e e  stream ve loc i ty ,  
and t is the co l lec t ion  time in t e rva l .  

The co l lec tor  pressure and temperature a r e  the primary 
measurements, and t h e i r  accuracy w i l l  depend upon the  q u a l i t y  of a l l  
elements i n  the measurement chain from the transducer t o  the ground- 
based telemetry s t a t i o n .  Attent ion is d i rec ted  i n  t h i s  study t o  system 

12 



elements up t o  the telemetry encoder and t ransmi t te r  with the view that 
the ove ra l l  system accuracy up t o  t h i s  point  w i l l  determine the q u a l i t y  
of standard telemetry elements which can be j u s t i f i e d .  Mechanical d i a -  
phragm type pressure transducers i n  the  1000 micron pressure range a r e  
present ly  ava i lab le  which can produce 0.5 percent measurements. Deflec- 
t i o n  of the diaphragm is detected by va r i a t ions  i n  capacitance which is 
produced r e l a t i v e  t o  a f ixed surface. The transducers a r e  sens i t i ve  t o  
temperature gradients ;  bu t  s ince  the  e n t i r e  densitometer instrument w i l l  

t u r e  s e n s i t i v i t y  should not pose a problem. The volume-to-aperture a rea  
U be conditioned and held a t  l i qu id  nitrogen temperature, transducer tempera- 

ra t%=,  ('ic '.g>,fAo k3.S ail uilCert2hty tf 3 percent. 

It is an t ic ipa ted  that the co l l ec to r  chamber temperature 
w i l l  be  control led r a the r  than measured. 
regulat ing the pressure over boiling l i qu id  nitrogen. A t  100"K, a 7 per- 
cent tolerance i n  the regulated pressure y ie lds  only a 1 percent e r ro r  i n  
temperature. I n  addi t ion  to  t h i s  advantage, bo i l ing  point  control  elimin- 
a t e s  the need f o r  one telemetry channel. 

Control would be achieved by 

Determination of %I, the gas constant of the col lected gas 
a t  the measurement temperature, Tm, involves some est imate  of atmospheric 
composition a t  the measurement a l t i t u d e  and an assumption t h a t  a l l  decom- 
posed molecules col lected i n  the atmosphere w i l l  be recombined by the time 
of measurement i n  the chamber. The l a t t e r  assumption is well  founded 

ment pressure r e l a t i v e  t o  the time required to  evaporate the col lected gas 
and measure. 

c because of the high c o l l i s i o n  frequency of the captured gas a t  the measure- 

w The er rors  induced by uncertainty i n  composition depend upon 
the molecular weights of the components and the composition. I f ,  f o r  
example ,  the concentrations of nitrogen and oxygen a r e  considered with 
the concentration of oxygen equal t o  6, the e r r o r  i n  evaluating Ryn rela- 
t i v e  to  the uncertainty i n  6 i s  given by 

. 
where MN and 
t ive ly .  It is seen t h a t  a 20 percent uncertainty i n  9 yie lds  only a 
0.55 percent e r r o r  i n  b. Thus, a r e l a t ive ly  crude estimate of oxygen- 
ni t rogen composition w i l l  s u f f i c e  t o  g ive  a value f o r  whose accuracy 
is  cons is ten t  with the other  fac tors  of the dens i ty  determination. 

a r e  the molecular weights of ni t rogen and oxygen, respec- 
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The leak f ac to r ,  KL, is associated with the i n t e g r i t y  of 
the pressure seal fo r  the measurement chamber enclosing the co l l ec to r  
during the  warmup and measurement cycle. The only s e a l  i n  the gas col- 
l e c t o r  system i s  i n  the shu t t e r  over the i n l e t  aper ture .  
f l i g h t  conditions associated with a 180 km o r b i t  and assuming warmup and 
measurement time of the same order as the co l l ec t ion  time in t e rva l ,  an  
uncertainty of 8 x l i t e r / s e c  i n  leak r a t e  would y i e ld  an  uncertainty 
i n  measured pressure of 1 percent. Leak r a t e s  of a t  l e a s t  an order of 
magnitude higher could be to le ra ted  provided it is known and repeatable  
t o  within 8 x 
type s e a l  can be developed t o  meet these requirements. 
cedures a r e  capable of providing measurements of vehic le  ve loc i ty  t o  
within 0.1 percent. The shu t t e r  governing the co l l ec t ion  time, t ,  would 
be controlled by a programmer which would govern a l l  the functions of the 
instruments. It is estimated that the opening and closing time would be 
of the order of 0.5 sec  with a r epea tab i l i t y  of 0.05 sec. 
normal co l lec t ion  time of 500 sec,  the accuracy of t should be 0.1 percent 
o r  b e t t e r .  

For the standard 

l i t e r / s e c .  It is an t ic ipa ted  that a t e f lon  O-ring 
Tracking pro- 

Thus, with a 

The last major item which m u s t  be known f o r  the evaluation of 
densi ty  is the capture coe f f i c i en t ,  cp. I f  reference is made t o  Section 
111 on the co l lec tor  design, i t  is  seen that the cy l ind r i ca l  tube co l l ec to r  
equipped w i t h  the proper aper ture  is capable of capture coef f ic ien ts  on 
the order of 98  percent. Thus, the f r ac t ion  of sweptmolecules which 
a r e  l o s t ,  i.e., the complement of cp, is approximately 2 percent. 

In te rmi t ten t  co l l ec t ion  fo r  the  determination of ambient 
dens i ty  by pressure transducer measurement thus has an uncertainty of 
approximately 8 .2  percent up t o  the telemetry system which i n  i t s e l f  has 
approximately a 1 percent uncertainty.  

B. Continuous Collection 

1. Maximum Collection Time 

A resonating quartz  c rys t a l  responds t o  changes i n  system 
mass, e.g., the deposit ion of a condensing gas,  by a s h i f t  i n  the resonant 
frequency. The c rys t a l  can therefore  be employed as a micro-balance, i f  
other  po ten t ia l  indeterminables a r e  eliminated. Certain c rys t a l  cuts  a r e  
highly sens i t i ve  t o  temperature; however, cuts  can be made which el iminate  
t h i s  e f f e c t  over the desired temperature range. From the work of Waters 
and Raynor [4:  and Stephens [5 and 61, a 39'40' A-T cu t  has been found t o  
be insensi t ive t o  temperature changes below 20'K. The s e n s i t i v i t y  of 
the c rys t a l s  i n  thickness shear resonance as a function of resonant f r e -  
quency w a s  presented in  equation (3) .  

L 
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where 

C = 2.26 x 

Af - cps 

f r  - cps. 

The c r y s t a l  response becomes nonlinear when the frequency s h i f t  due t o  
mass addi t ion  becomes approximately 1 percent of the  resonant frequency. 
The allowable mass change fo r  l inear  cy r s t a l  response is thus 

- 4.42 x 103 

fr  &max - 

Evaluating the system a t  180 km a l t i t u d e  from ava i l ab le  
atmospheric property data  then gives a maximum continuous co l l ec t ion  
time f o r  l i n e a r  response: 

where 

A. = aper ture  area 

A, = c r y s t a l  area. 

An e a r l i e r  discussion indicated the necess i ty  of a rea  r a t i o  
values ,  (Ac/Ao), of approximately 100 t o  minimize measurement e r r o r  due 
t o  escaping molecules; thus, the normalized maximum continuous co l l ec t -  
ing time becomes 

t max 1.8 x lo8 - -  - , 
r t0  f 
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where again to i s  one o r b i t  period - i n  t h i s  case 5600 seconds. Crystals  
a r e  ava i lab le  i n  the 1 t o  10 megacycle range which are adequate f o r  the 
o r b i t  l i v e s  under consideration. The l i n e a r  response range of operat ion 
i s  not  an  absolute l imi t a t ion ,  of course, and c a l i b r a t i o n  of the c r y s t a l  
response over a wider frequency s h i f t  range would extend the  data-produc- 
ing co l lec t ion  time. The disadvantage of t h i s  scheme would be the incon- 
venience of summing the accumulated mass i n  order t o  determine the changing 
c rys t a l  s e n s i t i v i t y  during the f l i g h t .  

2. Al t i tude  Range 

The maximum a l t i t u d e  a t  which continuous co l l ec t ion  f o r  
dens i ty  measurement with a quar tz  c rys t a l  can be used is  r e l a t e d  t o  the  
minimum measurable condensed mass change and the length of time between 
measurements. The frequency s h i f t ,  equation ( 3 ) ,  can be r e l a t e d  more 
d i r e c t l y  t o  co l lec tor  parameters and the co l l ec t ion  time by r e m i t t i n g  
as follows: 

A. t 
Af = Cf,' (fi/Ao) - - t 0  Ac t o  

o r  

2 A. t 
Af = Cf, ( p  u) - - 

a Ac t o  

From e a r l i e r  discussions c e r t a i n  r e s t r a i n t s  a r e  imposed 
upon some of these parameters. It w a s  es tab l i shed ,  fo r  instance,  t h a t  
the a rea  r a t i o ,  Ao/Ac, m u s t  be on the order of .01 fo r  a high capture 
coe f f i c i en t ,  and t / to  can be no la rger  than 0.1 i n  order t o  measure 
d iurna l  density var ia t ions .  The o r b i t a l  period, to, is  not  g r e a t l y  
a f fec ted  by o rb i t  a l t i t u d e  nor i s  the vehic le  ve loc i ty ,  u ,  which together  
wi th  the ambient densi ty ,  pa, forms a product which is  the enter ing mass 
f l u x  per u n i t  a r ea ,  fi/Ao. 
value of ambient densi ty ,  pa, is  simply a funct ion of the accuracy with 
which the frequency s h i f t ,  A€, can be measured. The percentage frequency 
s h i f t  fo r  a given mass change is  proportional t o  the bas i c  c r y s t a l  resonant 
frequency : 

It i s  apparent then tha t  the minimum measurable 

Af - = CAm f r .  
f r  
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Therefor e , e lec t ion  of high crystal  frequency i creases the measuring 
s e n s i t i v i t y ,  although as shown i n  the last  sec t ion  t h i s  implies a sho r t e r  
continuous co l l ec t ion  time before  nonlinear c rys t a l  response occurs. 

Since the frequency s h i f t  sensing and telemetry system has 
a l imi t ing  accuracy of approximately 1 percent, i t  i s  important that the 
t o t a l  frequency s h i f t  be l imited as much as possible  i n  order to  minimize 
inaccuracies i n  p . In  the case of continuous co l lec t ion ,  however, t h i s  
t o t a l  frequency s k f t  may be on the order of 10,000 - 100,000 cps fo r  a 
normal o r b i t a l  l i fe t ime.  To  reduce the magnitude of the s h i f t ,  e i t h e r  
the c r y s t a l  must be thermally cycled t o  revaporize condensed mass between 
measuring points ,  thus returning the c rys t a l  t o  a zero frequency s h i f t  
condition, or a bea t  frequency system must be employed i n  such a manner 
as t o  reduce the s h i f t .  The thermal cycle scheme introduces a complexity 
i n  the  cooling system which is undesirable. On the other hand, the bea t  
frequency technique increases the sophis t ica t ion  of the e lec t ronics  sens- 
ing system, although i n  t h i s  par t icu lar  appl ica t ion ,  the cooling system 
is  by f a r  the more d i f f i c u l t  component system. 

Smaller frequency shif ts  can be obtained by mixing the out- 
put of the measuring c rys t a l  with tha t  of a va r i ab le  reference o s c i l l a t o r .  
The r e su l t i ng  bea t  frequency i s  kept within a prescribed frequency range 
by dr iving the reference o s c i l l a t o r  t o  new frequencies as the bea t  f r e -  
quency reaches maximum set values.  The reference frequency is  var ied  by 
means of a frequency-voltage converter operating a voltage-controlled 
d r ive  motor on the var iab le  osc i l l a to r .  For the pa r t i cu la r  f l i g h t  o r b i t s  
considered i n  t h i s  study, a converter providing a 0.5 t o  4.5 v o l t  DC 
s i g n a l  corresponding t o  a 50 cps t o  450 cps bea t  frequency is appropriate.  
This sensing system i s  shown schematically i n  Figure 7. 

The maximum a l t i t u d e  a t  which the proposed instrument can 
measure densi ty  thus becomes a question of the desired accuracy of the 
measurement. The telemetry system r e s u l t s  i n  a 5 cps uncertainty for  
the bea t  frequency system; thus,  a frequency s h i f t  of 50 cps y ie lds  10 
percent uncertainty i n  the dens i ty  determination. Equation (14) thus 
ind ica tes  the following minimum measurable dens i t i e s  as determined by 
the c rys t a l  resonant frequency and assuming the use of the aforementioned 
bea t  frequency system: 

h - f r  D - 
1 mc 5 x 10'' kg/m3 134 km 

5 mc 2 x 10-l' kg/m3 220 km 

10 mc 5 x kg/m3 283 km 
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The low a l t i t u d e  measurement l i m i t a t i o n  can be imposed by 
the same gas dynamic condition which s e t s  the l i m i t  f o r  the in t e rmi t t en t  
system, o r  it may be determined by overloading of the c r y s t a l  by the high 
mass f l u x  a t  the lower a l t i t u d e s .  
the lower a l t i t u d e  l i m i t  s e t  by deviat ion from free-molecule flow condi- 
t ions was  found e a r l i e r  t o  be 140 km. A t  t h i s  a l t i t u d e ,  the maximum con- 
tinuous co l lec t ion  time is  

Based on the  assumed f l i g h t  vehic le ,  

Thus ,  a 5 mc c rys t a l  would remain i n  the l i nea r  response 
regime f o r  6 o r b i t s ,  and da ta  could be obtained f o r  continuing o r b i t s .  
It m u s t  be concluded t h a t  mass f l u x  i s  not  the determining f ac to r ,  and 
t h a t  the low a l t i t u d e  l i m i t  i s  140 km, r e s u l t i n g  from the vehic le  s i z e  
influence on the departure from the f r e e  molecular flow condition. 

3 .  Measurement Accuracy 

The ove ra l l  accuracy of the continuous co l l ec t ion  measure- 
ment system depends upon the fac tors  represented i n  the equation used t o  
ca lcu la te  the ambient densi ty  by t h i s  technique: 

The e r ro r  i n  dens i ty  determination due t o  the e r ro r  i n  f re -  
quency s h i f t  measurement is d af/af; therefore ,  the magnitude of the e r ro r  
is  determined not only by the frequency sensing equipment accuracy, d A € ,  
but  a l s o  by the magnitude of the frequency s h i f t  i t s e l f .  The uncertainty 
is  thus influenced by the co l l ec t ion  time fo r  a p a r t i c u l a r  measurement 
and by the o r b i t  a l t i t u d e .  The frequency-to-voltage converter discussed 
pr.-viously i s  the only component i n  the b e s t  frequency sensing system up 
t o  the telemetry encoder which can introduce reading e r ro r s .  This type 
of converter i s  a standard commercial component with 0.1 percent f u l l  
s ca l e  accurd-17. There w i l l ,  however, be e r ro r s  on the order of 1 percent 
i n  the telemetry of the bea t  frequency generated vol tage  s igna l .  

Since the maximum beat  frequency is  a s e t  value,  the 
inaccuracy cannot be less than 1 percent and can be more f o r  sho r t  
measurement in t e rva l s  o r  fo r  higher a l t i t u d e s  which r e s u l t  i n  l e s s  than 
f u l l  s c a l e  frequency s h i f t s .  Evaluation of the frequency s h i f t  from 
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equation (17) with a 10 mc c rys t a l  and an o r b i t  a l t i t u d e  of 180 km indi-  
cates  that the f u l l  scale s h i f t  of 500 cps  w i l l  occur i n  approximately 
1 /12  of an o r b i t  which is less than the maximum allowable time. Thus, 
a t  180 km which has been considered t o  be the nominal o r b i t a l  a l t i t u d e  
i n  t h i s  study, the  frequency s h i f t  has an uncertainty of 1 percent. 

In  t h i s  type of sensing system, the actual value of the 
reference o s c i l l a t o r  frequency is  immaterial, and it  is  only important 
that the s t a b i l i t y  of the frequency during a p a r t i c u l a r  measurement t i m e  
period be assured. Temperature control of those standard o s c i l l a t o r s  
r e s u l t s  i n  extreme s t a b i l i t y ,  and frequency s h i f t s  i n  the reference 
o s c i l l a t o r  w i l l  be negl igible .  

A s  previously discussed, tracking procedures provide a 
measurement of vehicle  ve loc i ty  t o  within 0.1 percent. 
swept molecules lost  due t o  non-unity capture coe f f i c i en t  i s  approximately 
2 percent. 

The f r ac t ion  of 

The i n l e t  aper ture  t o  c rys ta l  a r ea  r a t i o ,  Ao/Ac, has an 
uncertainty of 3 percent. 
as wel l  as the co l lec t ion  time between measurements, contr ibutes  a negl i -  
g i b l e  uncertainty.  

The c rys t a l ' s  resonant frequency determination, 

Continuous co l lec t ion  f o r  the determination of ambient 
densi ty  by a cryogenically cooled quartz c rys t a l  micro-balance thus has 
an ove ra l l  system measurement uncertainty of approximately 6.1 percent,  
including telemetry e r ror .  

V. COOLANT SYSTEM 

A.  In te rmi t ten t  Collection 

1. Cooling Scheme 

The component elements of the in te rmi t ten t  co l lec t ion  system 
a r e  shown schematically i n  Figure 8. 
the pressure transducer, the aperture shu t t e r ,  the  two thermal switches, 
the hea t  t r ans fe r  rod, a l iquid nitrogen source, and the l i qu id  helium 
reservoi r .  
co l l ec to r  t o  l iqu id  helium temperature by closure of the t r ans fe r  rod 
thermal switch. During t h i s  cooldown, the aper ture  s h u t t e r  is closed 
and the  co l lec tor  i s  i so la ted  f romthe  l iqu id  ni t rogen source. After 
co l l ec to r  cooldown has been achieved, the s h u t t e r  w i l l  open f o r  the p re -  
scr ibed co l lec t ion  time, permitting a known volume of ambient air  to  be 
captured. The next s t e p  is the vaporization of the condensed air  sample 
and pressure measurement by the transducer. This is accomplished by 

The major elements a r e  the co l lec tor ,  

A typ ica l  measurement cycle begins with the c o o l d m  of the 
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opening the t ransfer  rod thermal switch and bringing the co l l ec to r  i n t o  
contact  with the  l i qu id  ni t rogen source thereby warming the co l l ec to r  t o  
100'K. 
the warmup to l iqu id  ni t rogen temperature. Af te r  warmup i s  achieved and 
the pressure measured, the s h u t t e r  i s  opened, vent ing the col lected gas 
out  t o  the  atmosphere and reducing the r e s idua l  pressure t o  a negl ig ib le  
leve l .  The co l lec tor  is  then ready fo r  another l i qu id  helium cooldown 
and sample  col lect ion.  

The shu t t e r  is closed and sealed aga ins t  the i n l e t  aper ture  during 
. 

c 

2. Refr igerat ion Requirements 

The quant i ty  of l i qu id  helium required t o  accomplish the 
measurement mission depends upon the requirements p e r  measurement cycle 
and the t o t a l  number of cycles i n  the mission. A frequency of 10 measure- 
ments per o r b i t  was previously found t o  be required t o  reso lve  d iurna l  
densi ty  var ia t ions .  The descent from 180 km t o  140 km w i l l  r equi re  55 
o r b i t s  of the assumed f l i g h t  vehicle .  Therefore, a maximum of 550 measure- 
ments would undoubtedly s u f f i c e  f o r  both a l t i t u d e  v a r i a t i o n  measurement 
and the diurnal  var ia t ion .  Therefore, the number of measurement cycles 
could be considerably reduced i f  the operat ion of the aper ture  s h u t t e r  is  
control lable .  

(a) Cooldown Requirement 

The l i qu id  helium volume requirement f o r  co l l ec to r  
cooldown i s  re la ted  t o  the co l l ec to r  hea t  capaci ty  and a s p e c i f i c  l i qu id  
requirement as fo l  lows : 

where 

6 = col lec tor  w a l l  thickness 

pc = col lec tor  dens i ty  

pHe = l iqu id  helium dens i ty  

Ac  = t o t a l  co l l ec to r  a r ea  

6 = s p e c i f i c  l i qu id  requirement. 

, 
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From t h i s  equation, the co l lec tor  L/D f o r  the minimum value of (Ac/Vc)2/3 
can be found which w i l l  lead t o  the  minimum he l ium requirement. Solution 
i n  t h i s  manner r e s u l t s  i n  a n  L/D = 1 co l l ec to r  as the optimum configura- 

co l l ec to r  was required i n  order t o  achieve near-unity capture coef f ic ien ts .  
Ex7aluating t h i s  configuration as compared to the optimum configuration 
ind ica tes  only a 15 percent penal ty  in  the helium requirement f o r  an 
L/D = 5 col lec tor .  

t ion .  Previous discussions indicated,  however, that an L/D = 5 cy l ind r i ca l  

* 
The s p e c i f i c  l iquid requirement, E, is the number of 

grams of i i qu id  helium required to  cool a gram of the co l l ec to r  mater ia l  
over a spec i f ied  temperature in t e rva l ,  and has been analyzed by Jacobs 
[7]. 
the co l l ec to r  w a l l s  because of high thermal conductivity charac te r i s  t i c s  
as low temperatures. A value of 5 = 0.5 appl ies  t o  the cooling of 1 0 0 ° K  
copper t o  l iqu id  helium temperature, i f  only the hea t  of vaporizat ion is 
ava i lab le .  
helium's heat  capaci ty  i n  the cooldown would reduce 6 t o  0.03. The more 
conservative f igu re  w i l l  be used i n  the following ca lcu la t ions .  

I n  t h i s  pa r t i cu la r  appl ica t ion ,  copper would probably be used f o r  

Use of a b o i l o f f , v e n t  system which makes u s e  of the gaseous 

The optimum col lec tor  t o  gage volume r a t i o ,  Vc/Vg, was 
e a r l i e r  found t o  be 2 and the gage volume is on the order of 18 cm3. For 
a co l l ec to r  w a l l  thickness of 6, = 0.005 cm, the required l i qu id  helium 
volume for  cooldown is thus calculated t o  be 12.4 un3 f o r  each cycle. 

(b) Condensed Gas Requirement 

During the measurement cycle,  the co l l ec to r  w a l l s  and 
t r a n s f e r  rod t r ans fe r  the  heat  load associated with the condensation of 
the mass of enter ing f r e e  stream air  t o  the l iqu id  helium where bo i lo f f  
w i l l  balance the heat  load. The energy to  be removed is e s s e n t i a l l y  the 
k i n e t i c  energy of the enter ing a i r  and can be r e l a t ed  t o  the l i qu id  helium 
volume requirement as follows : 

where 

= helium heat  of vaporization. 
HV 
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Using t / to  = 0.1 f o r  the sampling time and the optimum co l l ec to r  t o  gage 
volume r a t i o ,  

I 
Evaluation a t  a nominal 180 km a l t i t u d e  r e s u l t s  i n  a 

requirement of 2.22 cm3 of l i qu id  helium for each measurement cycle. 
This volume requirement i s  d i r e c t l y  proport ional  t o  the ambient dens i ty  
and thus is e a s i l y  evaluated as a funct ion of a l t i t u d e .  

"He - = 3.71 x loL2 pa. 
'He 

t 

(c) H e l i u m  Reservoir 

The requirement of 14.6 cm3/cycle of l i qu id  helium f o r  
a maximum of 550 cycles i m p l i e s  a helium re se rvo i r  volume of 8 l i t e r s .  
I n  add i t ion  to  the hea t  load associated wi th  the  gas co l l ec t ion  process,  
there  a r e  heat leaks through the in su la t ion  of the reservoi r .  Assuming 
the use of mult i layer  insu la t ion  and 80°K surrounding temperature r e s u l t s  
i n  a requirement of 0.2 cm3/cycle of l i qu id  helium. To the t o t a l  cycle 
requirements should be added a n  addi t iona l  16 cm3 of l i qu id  helium t o  
account f o r  reservoi r  insu la t ion  losses  during a 12-hour prelaunch period. 
The t o t a l  amount of helium required f o r  550 measurement cycles plus a 
12-hour hold period is 8166 cm3 which i m p l i e s  a 10-inch diameter spher ica l  
reservoi r .  

I 

B. Continuous Collect ion 

1. Coolant Scheme 

Using the quartz  c r y s t a l  sensor as a continuous cryopump 
f o r  the  enter ing mass f l u x  reduces the r e f r i g e r a t i o n  requirements con- 
s iderably  compared t o  the in t e rmi t t en t  co l l ec t ion  system, inasmuch as 
there  is  no need f o r  a thermal cycling phase i n  the coolant system, thus 
el iminat ing a major hea t  load. 

I 
The reduced l eve l  of hea t  load makes possible  the use of 

The coolant  system, schematically shown i n  Figure 9 ,  
a precooled metal mass ac t ing  as a heat  s ink  f o r  a simple source of 
refr igerat ion.* 

* 
An a l t e r n a t e  cooling scheme by hydrogen sublimation is presented i n  
Appendix D. 
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cons is t s  of the c r y s t a l  heat  s ink  mass (nominally a t  l i qu id  helium tem- 
perature)  i n  an  insulated container,  a conduction path from the heat  s ink  
t o  the c r y s t a l ,  and a gas co l l ec to r  constructed such that the w a l l s  a c t  
as a hea t  s ink  a t  a temperature near 10O0K. 
cooled before f l i g h t  with l iqu id  helium and l iqu id  ni t rogen by means of 
coolant c o i l s  i n t eg ra l  t o  the heat  s ink masses. The co l lec t ing  period is  
i n i t i a t e d  a t  the desired a l t i t u d e  by permanently removing an aper ture  cap 
which has previously maintained vacuum conditions i n  the co l l ec to r ,  thus 
keeping the hea t  load  t o  a minimum during prelaunch holds and the i n i t i a l  
por t ion  of the f l i g h t .  The heat  sinks slowly r ise i n  temperature during 
the measurement period. Accurate measurement conditions a r e  maintained, 
however, as long as the c r y s t a l  temperature remains a t  a l eve l  which 
r e s u l t s  i n  condensate vapor pressures a t  l e a s t  an order of magnitude l e s s  
than the gas sample pressure,  and the co l l ec to r  w a l l s  remain below a 
l eve l  which would produce an unacceptable r ad ia t ion  heat  load t o  the 
c r y s t a l  or  which would not reduce s u f f i c i e n t l y  the temperature of incom- 
ing gas molecules. The analyses i n  the following sec t ions  r e s u l t  ir, a 
c r y s t a l  heat  s ink  of 55 cm3 of l e a d  and a co l l ec to r  w a l l  heat  s ink  of 
113 cm3 of aluminum. 

The two heat  sinks a r e  pre-  

2. Refr igerat ion Requirements 

A hypothet ical  mission w i l l  be used i n  t h i s  ana lys i s  of the  
required r e f r i g e r a t i o n  system, consis t ing of an unattended 12-hour hold 
period of the vehic le  before launch followed by a 55-orbit  f l i g h t .  

(a) Crystal  Sensor 

(1) Radiation Heat Load - The c rys t a l  receives a 
r a d i a t i o n  hea t  load from the co l lec tor  w a l l s  not only during the measure- 
ment period but  a l s o  during any unattended prelaunch hold periods. 
design of the c rys t a l  heat  s ink  mass must take i n t o  account, then, the 
operat ional  problems involved i n  large vehic le  launches. 

The 

The co l lec tor  w a l l  being a hea t  s ink  w i l l  be varying i n  
temperature during the f l i g h t ;  however, a conservative heat  load is  obtained 
i f  a w a l l  temperature of 90°K is used i n  the calculat ion.  The c r y s t a l  can 
conservatively be considered t o  have an abso rp t iv i ty  of un i ty  and the col- 
l e c t o r  w a l l  w i l l  be polished t o  a n  emissivi ty  of 0.1. 

The maximum avai lable  c r y s t a l  diameter is approxi- 
mately 2.2 cm; therefore ,  A, = 3.95 cm2, and from the r ad ia t ion  heat  
t rans  f e r  equation, 

= (5.67 x EA, (T: - T:) Qr 

and 

Q, = 1 mi l l iwat t .  
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(2) Gas Condensation Heat Load - The en ter ing  mass 
f l u x  is  reduced i n  temperature by the cold co l l ec to r  w a l l s  before  
encountering the c rys t a l .  Assuming the gas temperature i s  reduced t o  
100°K, the energy removal required,  Ah, fo r  condensation on the c r y s t a l  
i s  83 callgm. 

Using an  a l t i t u d e  of 140 km f o r  a conservative mass f lux ,  

= 26.5 x 1 0 ' ~  gm/sec - cm2. 

The condensation hea t  load, using the f a c t  t h a t  
A,/Ao = 100, i s  then 

= (AI) (fn/Ao) A, = 0.037 m i l l i w a t t s .  cond 

(3) Crystal  Temperature Gradient - The equation f o r  
the temperature grad ien t  i n  a f l a t  conducting d i s c  with a uniformly 
imposed heat load is 

R~ - r2) ( 
Tr - T R = q  4k6 ' 

where 

q = hea t  load 

k = thermal conductivity of d i s c  

6 = d i s c  thickness 

R = edge radius  

r = loca l  rad ius .  

The t o t a l  imposed hea t  load due t o  r a d i a t i o n  and gas 
conduction is 

p = 2 . 6  x 10-1 m i l l i w a t t s / c m 2 .  . 
Therefore, fo r  a 0.015 cm th ick  quar tz  c r y s t a l  

(k = 5 watts/cm-OK), the maximum temperature d i f fe rence  caused by the 
imposed heat load is  &C = 0.005"K. 
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(4) 
s ink  should have a high s p e c i f i c  heat i n  the appl icable  range of tempera-  
t u re  t o  minimize heat  s ink  weight, as well  as a high dens i ty  which w i l l  
tend t o  minimize the displaced onboard volume. Lead is an appropriate  
hea t  s ink  material on t h i s  bas i s ,  and the following equation can be used 
t o  ca l cu la t e  the required mass of metal required f o r  a given time in te rva l :  

Crystal  Heat Sink - The mater ia l  used i n  the hea t  

m =  

The allowable heat  s i n k  temperature r i s e  is determined 
by the c r i t e r i o n  t h a t  the condensate vapor pressure should be an order of 
magnitude less than the co l l ec to r  chamber pressure f o r  negl ig ib le  e r r o r  
i n  condensed mass determination. 
with a speed r a t i o  of approximately S = 10, the c r y s t a l  has approximately 
ten times the volumetric pumping speed of the  i n l e t  aper ture .  The col- 
l e c t o r  pressure during measurement w i l l  therefore  be approximately 1/10 
the ambient pressure.  Using the condensate vapor p r e s s u r e  c r i t e r i o n  thus 
r e s u l t s  i n  a maximum allowable c rys ta l  temperature of 23.5"K. With the 
allowable LX = 18.5"K,  so lu t ion  of equation (23) r e s u l t s  i n  a lead s ink  
mass of 0.68 kg f o r  the nominal mission described a t  the beginning of 
t h i s  sec t ion ,  which has a time in te rva l  of t = 2.57 x l o 5  seconds. The 
required heat  s ink  volume i s  55 cm3. 

With an a rea  r a t i o  Ac/Ao = 100, and with 

The hea t  s ink  mass and cold vacuum container w i l l  be 
highly polished t o  minimize the  rad ia t ion  heat  load t o  the hea t  s ink  
i t s e l f ,  and the cold MSS w i l l  be supported within the  container by 
means of t h in  s t a i n l e s s  s t e e l  tension w i r e s  providing a negl ig ib le  hea t  
leak. 

(b) Collector Wall 

(1) Insu la t ion  Heat Leak - I n  order f o r  the co l l ec to r  
w a l l  t o  funct ion e f f i c i e n t l y  as a heat s ink ,  it must be insu la ted  from 
the surrounding veh ic l e  s t r u c t u r e  which is nominally a t  300°K temperature. 
This i s  most conveniently accomplished by the use of mult i layer  aluminized 
mylar shee ts ,  i . e . ,  superinsulat ion.  The hea t  t r ans fe r  through t h i s  
i n su la t ion  i s  by both conduction and r ad ia t ion ,  and i s  commonly expressed 
as follows: 

Q = (5.67 x f3(T3000K 4 - Ti )  As 

where p = 0.002 f o r  optimum superinsulat ion i n s t a l l a t i o n .  
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From the ear l ier  discussion of capture  coe f f i c i en t  
c r i t e r i a ,  the co l l ec to r  w a l l  area, As ,  was  r e l a t e d  t o  the  i n l e t  aper ture  
a rea ,  Ao, by the  number of co l l i s ions  required t o  reduce the incoming 
molecule temperature below a c r i t i c a l  l eve l ,  and t o  a l low only 1 percent 
of the molecules t o  escape before  being cryopumped. On t h i s  bas i s ,  

As > 400A0. 

For the aforementioned c r y s t a l ,  i . e . ,  A, = 4 cm2, t h i s  
c r i t e r i o n  would imply As > 16 cm2. I n  t h i s  s tudy a l a r g e r  co l l ec to r  has 
been considered in  order t o  reduce the escaping molecular f r a c t i o n  below 
1 percent and t o  a r r ive  a t  a reasonable prototype design which groups a l l  
components, including the c r y s t a l  hea t  s ink  mass, i n t o  a nea t ly  packaged 
un i t .  A col lector  of 3.2 cm diameter by 8.9 cm length is therefore  
se lec ted  f o r  the prototype design. This co l l ec to r  has a w a l l  a r ea  of 
88.8 cm2. 

On the bas i s  of t h i s  co l l ec to r  geometry, the co l l ec to r  
w a l l  hea t  load due t o  super insu la t ion  heat  leak  i s  

= 8 m i l l i w a t t s .  
Q Ins 

( 2 )  Gas Cooling Heat Load - The co l l ec to r  w a l l  must 
cool the incoming mass f lux  t o  approximately 100°K before the gas 
molecules s t r i k e  the c rys t a l .  
remove i s  e s sen t i a l ly  the  k i n e t i c  energy of the incoming stream. Evalua- 
t i on  a t  140 km a l t i t u d e  gives a conservative value of t h i s  energy removal 
rcquir  ement . 

The amount of energy which the w a l l  must 

( 2 5 )  
1 Q/Ao = - 2 pu3 = 84.5 milliwatts/cm2 

and 

= 3.38 m i l l i w a t t s .  Qcool 

( 3 )  Collector Wall Heat Sink - The co l l ec to r  w a l l  must 
serve not  only as a hea t  s ink  bu t  a l s o  s t r u c t u r a l l y  as a vacuum chamber 
containing the c rys t a l  sensor and the c r y s t a l  hea t  s ink.  Aluminum is  a 
more desirable  metal  i n  t h i s  app l i ca t ion  than the lead used i n  the c rys t a l  
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heat  s ink ,  not only because of s t ruc tu ra l  cha rac t e r i s t i c s  bu t  a l s o  
because of aluminum's grea te r  specific hea t  i n  the desired temperature 
range, i . e . ,  70°K t o  100°K. 

For the t o t a l  co l lec tor  w a l l  hea t  load of 11.38 m i l l i -  
w a t t s ,  equation (23) indicates  that 0.31 kg of aluminum is required t o  
maintain the  w a l l  temperature below 100°K during the assumed mission. 
The required m e t a l  volume is 113 an3 .  

t 

VI.  SUMMARY DESCRIPTION OF RECOMMENDED SYSTEM 

On the basis  of the grea te r  s e n s i t i v i t y  of the c rys t a l  sensor,  the 
simpler coolant system, compared t o  those connected with the  in te rmi t ten t  
method, and the f a c t  that an i n l e t  shu t t e r  is  not  required,  the continuous 
co l l ec t ion  system is deemed the most promising instrument fo r  prototype 
development. A l l  major components of t h i s  sys tem have been conservatively 
analyzed fo r  an assumed f l i g h t ,  and r e l i a b l e  dens i ty  measurements can be 
expected with an overa l l  e r ro r  (including telemetry) of only 6 percent. 
A summary descr ip t ion  of the sys t em follows. 

The densitometer consis ts  of these major components: 

c 

A cy l ind r i ca l  o r i f i c e  co l l ec to r  with a capture coef- 
f i c i e n t  of 98 percent. 

A cooled p iezoe lec t r ic  c rys t a l  which responds t o  mass 
addi t ion  from cryopumping with a frequency s h i f t .  

A measuring system consisting of a va r i ab le  frequency 
o s c i l l a t o r  and a beat  frequency-to-voltage converter. 

A r e f r i g e r a t i o n  system consis t ing of two heat  s inks ,  
one of lead to  cool the c rys t a l  t o  a temperature not  
higher than 23,5"K, and the other  of aluminum which makes 
up the co l lec tor  body and keeps i t s e l f  a t  a temperature  
no higher than 100°K. 

Figure 9 
ment scheme . shows these components, and Figure 7 depicts  the  measure- 

Aside from e l e c t r i c  power and telemetry. the densitometer - _  
system can operate independently of the vehicle.  
conditioning of the system would be achieved on the ground e i t h e r  i n  a 
fixed o r  a mobile laboratory w i t h  r e l a t ive ly  s i m p l e  equipment require- 
ments. Once conditioned and inserted i n t o  the vehic le ,  the system can 
withstand a hold of a t  least 1 2  hours without a t t e n t i o n  or umbilical 
connection. 

Vacuum and temperature 
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Space, weight, power and telemetry requirements onboard a vehicle 
are estimated as follows: 

(1) Space 

Densitometer 

Electronics 

650 cm3 
15,000 cm3 

( 2 )  Weight 

Densitometer 

Electronics 

1.4 kg 
4.5 kg 

(3) Power - 30 watts at 28 volt DC. 

( 4 )  Control Signals and Telemetry 

One control signal from onboard programmer to eject 
aperture cap. 

Four telemetry channels: . 
a. 0-5 volt DC 

b. monitor variable oscillator setting 

c. lead heat sink temperature 

d. aluminum heat sink temperature. 
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U Q Cryopanc! 

F i g u r e  I .  Cryopanel Normal t o  the A i r s t r e a m  

. 

. 
U 0 . 

F i g u r e  2. C y l i n d r i c a l  Cryopanel A l i g n e d  w i t h  A i r s t r e a m  
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Figure 5.  General Collector Configuration 
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APPENDIX A 

Capture Coeff ic ient  

. 

t 

During the start of the co l lec t ion  process,  the incident  molecules 
w i l l  s t r i k e  a cryopanel t h a t  w i l l  probably be covered with layers  of 
absorbed gases. A s  the co l l ec t ion  process continues,  a condensate layer  
w i l l  form, and the incident  molecules w i l l  impinge upon the condensate 
layer .  
f i c i e n t  f o r  the incident  gas impinging on these two types of surfaces ,  
b u t  i n  p rac t i ce  it is expected t h a t  only the c o l l l a i o r i  of the DoLecules 
on the condensate w i l l  be important. Since the incident  gas is air with 
a composition camparable t o  the sea  level  condition, the important gases 
a r e  ni t rogen and oxygen. 

I n  p r inc ip l e ,  it is necessary t o  es t imate  the s t i ck ing  coef- 

N o  experimental data  have been found corresponding t o  a high 
ve loc i ty  d i rec ted  flow impinging on a cryopump. 
coe f f i c i en t  da ta  is l imited t o  flows with S = 0 and temperature below 
400°K. Furthermore, inves t iga tors  do not seem t o  be i n  agreement on 
the values of s t i ck ing  coef f ic ien t .  Wang e t  a l .  [8] found that the 
s t i c k i n g  coe f f i c i en t  increases as  the thickness of the condensate layer  
increases.  This increase ceased a f t e r  a layer  corresponding t o  about 
l o 4  monolayers was deposited. This suggests t h a t  the co l l ec to r  p l a t e  
s t i ck ing  coe f f i c i en t  would vary w i t h  the thickness of the condensate 
layer ;  however, Buffham e t  a l .  [9] using w h a t  seems t o  be a comparable 
experimental arrangement found no va r i a t ion  of s t i ck ing  coe f f i c i en t  with 
condensate layer  thickness. There is a l s o  a lack of agreement concern- 
ing the  leve l  of the s t i ck ing  coef f ic ien t .  
r e s u l t s  of a la rge  number of t e s t s  t ha t  determined the v a r i a t i o n  of 
s t i ck ing  coe f f i c i en t  with both cryopump temperatures and temperatures 
of the impinging gas. H i s  s t i ck ing  coe f f i c i en t s  a r e  s i g n i f i c a n t l y  lower 
than the values reported by Buffham e t  a l .  [ 9 ] ,  Bachler e t  a l .  [ l l ]  and 
Stickney and Dayton [12]. The experimental data  a r e  considered t o  be of 
l imited value fo r  two reasons: (1) the d a t a  do not cover the range of 
test conditions required,  and (2) the da ta  do not appear t o  be cons is ten t  
among d i f f e r e n t  inves t iga t ions .  I n  order t o  apply these da ta  t o  the pre- 
s en t  ana lys i s ,  t heo re t i ca l  methods must be used a s  a guide for  extrapola- 
t ion .  

The ava i lab le  s t i ck ing  

Dawson [ lo ]  presents  the 

The theo re t i ca l  invest igat ions of the s t i ck ing  coe f f i c i en t  have 
genera l ly  been l imited t o  considerations of the  one-dimensional model 
consis t ing of a monatomic molecule co l l id ing  with a chain of e l a s t i c a l l y  
coupled l a t t i c e  molecules. Since these correspond t o  normal co l l i s ions ,  
the r e s u l t s  might be s u i t a b l e  f o r  the highly d i rec ted  flow tha t  e x i s t s  
i n  the present  invest igat ion.  One object ion t o  t h i s  approach is  the use 
of the  highly organized l i n e a r  o s c i l l a t o r  l a t t i c e  for  a condensate layer  
t h a t  appears t o  have many voids and defec ts ,  Roder [13]. Another 
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object ion is  the f a c t  t h a t  the c o l l i s i o n  model is only co r rec t  f o r  an  
i n f i n i t e  speed r a t i o ,  while the speed r a t i o  f o r  a 180 km o r b i t  i s  about 
10. Although the random energy is  small compared t o  the d i rec ted  energy 
(- 1/100), the random energy is  comparable t o  the hea t  of vaporizat ion 
of nitrogen and oxygen s o  the condensation process may be influenced by 
the f i n i t e  speed r a t i o .  

Another t heo re t i ca l  approach has been considered by Buffham e t  a l .  
[ 9 ] .  They assumed t h a t  the gas a r r ived  a t  the cryopump wi th  a Maxwellian 
ve loc i ty  d i s t r ibu t ion  (S = 0) and a l l  the molecules with an  energy l eve l  
below the c r i t i c a l  energy l eve l  (E,) were captured. The s t i ck ing  coef- 
f i c i e n t  was then obtained from 

where 

T = temperature of the surrounding gas. 

Since no estimate was made f o r  the value of the  c r i t i c a l  energy, i t  must 
be obtained from experiments. Figure A - 1  is  a p l o t  of 1 - 0 vs 1 / T  f o r  a 
range of values of the parameter E,. 

Included a r e  da ta  points f o r  nitrogen. The da ta  of Dawson [ l o ]  
ind ica te  tha t  the c r i t i ca l  energy l eve l  i s  about 1500 cal/mole which is  
comparable to  the hea t  of vaporizat ion.  The o ther  d a t a  include values  
i n  excess of 4000 cal/mole. Since most experiments were only accura te  
t o  1 o r  25 percent,  there  is considerable uncertainty i n  the c r i t i c a l  
energy t o  be assoc ia ted  with the s t i ck ing  coe f f i c i en t s  of near ly  uni ty .  
This could be more r ead i ly  resolved with da ta  obtained a t  a higher gas 
temper  a t u r  e. 

From Figure A-1 i t  may be assumed t h a t  Dawson's da ta  represent  a 
lower l i m i t  of E, = Eb, where Eb is  the energy required t o  remove a 
molecule from the sur face  of the condensate. Since a prohib i t ive  experi-  
mental accuracy would be required t o  s e t  an  upper l i m i t  on E, using room 
temperature ni t rogen,  i t  is necessary t o  use a theo re t i ca l  approach t o  
es t imate  the upper l i m i t .  

McCarroll and Ehrl ich [14] used the one-dimensional l a t t i c e  t o  
es t imate  Ec/Eb (see Figure A-2) .  They found that, f o r  equal molecular 
weights, the energy r a t i o  Ec/Eb var ied with the spr ing  constant r a t io ,  
Kc/Kk. Kc is the spr ing constant f o r  the e l a s t i c  coupling between the  
inc ident  molecule and the l a t t i c e  molecule, while Kk is the spr ing  con- 
s t a n t  between the l a t t i c e  molecules. I f  the masses and the  spr ing  con- 
s t a n t s  were the same, they found that Ec/Eb = 25. 
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only as K , / K ~  approaches 0.2 does the  energy r a t i o  approach uni ty  
Since it is  not  known which is  the  value obtained from Dawson's data. 

why this low value of K ~ / K ~  should e x i s t ,  i t  appears that the energy 
r a t i o  Ec/Eb can only be assumed t o  f a l l  between 1 and 25. 
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Figure A-1 .  Variations of St icking Coeff ic ient  w i t h  
Temperature 

U 

Figure A-2. One-Dimensional Model of Surface Interact ion 
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APPENDIX B 

Accommodation Coeff ic ient  

Since the energy l eve l  of the incoming molecules i s  about two orders  
of magnitude g r e a t e r  t h a n  the heat of sublimation while the c r i t i c a l  
energy f o r  condensation i s  about the same order of magnitude as the hea t  
of sublinoation, i t  is c l ea r  that the incoming molecules must be cooled 
by successive c o l l i s i o n s  with the cold w a l l  before condensation can 
occur. 
t i o n  coef f ic ien t .  

The number of co l l i s ions  required w i l l  depend upon the accommoda- 

The accommodation coe f f i c i en t  var ies  with such parameters as 

(1) gas species  

(2) w a l l  species  

(3) gas temperature 

(4) w a l l  temperatures 

(5) contamination of the w a l l  surface.  

There a r e  no experimental d a t a  on the accommoLation coe f f i c i en t  
f o r  high ve loc i ty ,  highly d i rec t iona l  a i r  impinging on a cryogenic sur-  
face  which is covered with a layer of condensate. 

Some l imited data  were obtained by Mayer e t  a l .  [15] using a cold 
plate  normal t o  a supersonic stream. Since the  flow was not f r e e  molec- 
u l a r  r e l a t i v e  to  the p l a t e ,  the temperature of the inc ident  gas was lower 
than the  s tagnat ion temperature, and the da ta  a r e  not appl icable  t o  the 
present  ana lys i s .  

c 

I n  general ,  molecular beam data a r e  not s u i t a b l e  s ince  they have been 
obtained a t  r e l a t i v e l y  low energy levels  and with no condensate layer .  
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Theoretical  r e s u l t s  o f t en  suggest the hard sphere approximation fo r  
high energy levels .  

. 
where 

M = molecular weight. 

Unfortunately, t h i s  s i m p l e  approximation i s  of questionable value 
i f  the molecular weight of the gas i s  equal t o  t h a t  of the s o l i d ,  s ince  
i t  implies complete accommodation. The approach of Oman e t  a l .  [16] 
would undoubtedly be useful ,  but  t h e i r  r e s u l t s  have not  included the 
case where M1 = M2. 

Rogers [17] did include the case of M1 = M2 i n  h i s  inves t iga t ions  
using an  analog computer, bu t  s ince  h i s  " w a l l "  consis ted of a s ing le  
l i nea r  o s c i l l a t o r ,  i t  i s  questionable whether the r e s u l t s  a r e  quan t i t a t ive .  
Other invest igat ions have found t h a t  the e f f e c t s  of the c o l l i s i o n  penet ra te  
i n to  the w a l l  f o r  severa l  molecular diameters during the time required f o r  
the c o l l i s i o n  t o  be completed. 
calculat ions of the accommodation coe f f i c i en t  f o r  M1 = M2 over a range of 
Kc/Kk (see Figure B-1) .  

McCarroll and Ehrl ich [14]  have included 

Using the r e s u l t s  of Appendix A, i t  is  assumed that E, = % and 
Kc/Kk = 0 . 2 ;  therefore ,  from Figure B-1, i t  appears that a = 0.77 should 
be cons erva t ive . 
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Figure B-1. Accommodation Coeff ic ient  Variat ion 
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APPENDIX C 

Sputtering 

When high ve loc i ty  molecules or ions impinge on the sur face  of a 
t a r g e t ,  they may cause some of the t a rge t  mater ia l  t o  be ejected o r  
sput te red .  This sput te r ing  process is discussed quan t i t a t ive ly  i n  terms 
of t he  y ie ld  which is  defined as the r a t i o  of the r a t e  of spu t t e r ing  of 
t a r g e t  molecules to the rate of incidence of energe t ic  molecules o r  ions. 
The y i e l d  depends on the  energy of the incident  molecules, the binding 
energy of the t a r g e t  iiicLeciiles, the  anglc of incidence and the atomic 
weights. 

It has general ly  been found tha t  molecules o r  ions which a r e  t rave l -  
ing a t  s a t e l l i t e  v e l o c i t i e s  do not cause measurable sput te r ing  on m e t a l s ;  
thus,  there  should be no erosion of the bas i c  condenser sur face  during 
the co l l ec t ion  cycle. There i s  s t i l l  the p o s s i b i l i t y  that the incident  
molecules w i l l  cause sput te r ing  of the condensate layer .  This p o s s i b i l i t y  
is due t o  r e l a t i v e l y  l o w  binding energy of the condensate l a y e r  when com- 
pared t o  that of the typ ica l  metal. 

Since no data were found 'on the se l f - sput te r ing  of condensed ni t rogen 
o r  oxygen, it was necessary t o  estimate the se l f - spu t t e r ing  y ie ld  from the 
co r re l a t ion  of ava i l ab le  data.  

From a comparison of the sput te r ing  of metals by noble gas ions,  i t  
was found t h a t  the mass of the incident ion was not  a dominant f ac to r  i f  
the y i e ld  was  lm. Therefore, a crude co r re l a t ion  was made using the 
d a t a  of S tua r t  [18] f o r  argon ions on various metals.  The cor re la t ion  is 
presented i n  Figure C - 1 ,  which is a p l o t  of y ie ld  vs  the r a t i o  of the 
energy of the incident  ion t o  the heat of sublimation (Ei/Eb). 
shows that the da ta  co r re l a t e  within an order of magnitude. Assuming that 
ni t rogen has a s imi la r  se l f - sput te r ing  y i e ld ,  and noting t h a t  Ei/Eb = 
9/0.07 = 130, i t  appears t h a t  the yield w i l l  be about 1. I f  t h i s  i s  cor- 
r e c t ,  each incident  molecule w i l l  spu t t e r  one molecule from the condensate 
l a y e r .  After  the f i r s t  c o l l i s i o n ,  the energy l eve l  of the incident  mole- 
cule  i s  about (1 - a) Ec; therefore ,  i f  a = 0.77, the energy r a t i o  Ei/Eb 
is about 30. Since the sput te r ing  associated with t h i s  energy r a t i o  is 
small compared t o  the uncertainty in the i n i t i a l  spu t t e r ing  y ie ld ,  any 
spu t t e r ing  a f t e r  the i n i t i a l  co l l i s ion  can be neglected. 

The p l o t  
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APPENDIX D 

Refrigerat ion by Hydrogen Sublimation 

A r e f r i g e r a t i o n  system using the sublimation of s o l i d  hydrogen as 
the hea t  removal mechanism could be considered f o r  cooling the c r y s t a l  
and the co l l ec to r  walls. This concept involves the r e l a t ionsh ip  between 
the equilibrium vapor pressure of a substance and the substance tempera- 
tu re .  A hea t  load impressed upon the substance can be removed from the 
system under constant temperature conditions i f  the substance sublimes 
and the evolved vapor is rmoved frm ths s y s t m  zt, a r a t e  r.~hich main- 
t a in s  a constant equilibrium vapor pressure. The hea t  removal capacity 
of such a technique is equivalent t o  the  hea t  of sublimation of the sub- 
s tance  which is equal t o  the sum of the hea t  of fusion and the hea t  of 
vaporizat ion a t  the pa r t i cu la r  temperature of i n t e r e s t .  A survey of 
candidate substances f o r  such a scheme indica tes  that only s o l i d  phase 
neon and hydrogen meet the primary requirement of s o l i d  phase temperature 
near 20°K a t  r ead i ly  cont ro l lab le  vapor pressure,  e.g., g rea te r  than 
1 t o r r  (Figure D-1). The hea t  of sublimation of hydrogen ( a t  13.95'K) 
is 
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5 
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8 
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Figure D-1. Solid Phase Vapor Pressure 
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as compared t o  the heat  of subiimation of neon ( a t  16°K) of 

&Ne = 25 cal/gm. 

Therefore, on a weight bas i s  the hydrogen sys tem is d e f i n i t e l y  superior .  
On the other hand, the dens i ty  of s o l i d  neon is much g rea t e r  than s o l i d  
hydrogen, and as a r e s u l t  a g rea t e r  volume of so l id  hydrogen is required 
fo r  a given heat  load than would be required for  s o l i d  neon. 

hydrogen 

neon (4) p =  36.1 cal/cm3. 

(4) p = 10.6 cal/cm3 

A secondary considerat ion is  the vapor pressure l eve l  implied by the 
operating conditions for  the two coolants.  The vapor pressure of s o l i d  
hydrogen a t  the t r i p l e  point  is 

P = 54 t o r r ,  (T = 13.95"K) 0 - 5 )  
vH2 

which is the highest  possible operating temperature fo r  t h i s  pa r t i cu la r  
coolant. The vapor pressure of neon a t  the same temperature is 

PvNe = 0.1 t o r r ,  (T = 13.95%) (D- 6 )  

and indicates  t h a t  considerably b e t t e r  vacuum would be required fo r  the 
use of neon as a coolant a t  t h i s  temperature. The c r y s t a l  sensor,  how- 
ever, can operate successful ly  as a mass col lec tor  a t  temperatures as 
high as 20°K, and s ince the t r i p l e  point of neon is  above t h i s  value 
(TTp = 24.57 OK), the neon could be operated a t  t h i s  higher temperature. 
I n  t h i s  case, the required vapor pressure could be 

P = 28 t o r r .  (T = 20°K) (D-7 1 
vNe 

A somewhat b e t t e r  vacuum condition is  s t i l l  required of the neon coolant 
system as compared t o  the hydrogen system. 
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Hydrogen is the most promising substance for  t h i s  sublimation scheme 
on the  bas i s  of the weight advantage, and because of cost  considerations 
which include the a v a i l a b i l i t y  a t  the launch s i t e .  In  order t o  avoid a 
double coolant system, i .e . ,  l iqu id  nitrogen cooling fo r  the co l lec tor  
w a l l s  and hydrogen sublimation for  c rys ta l  cooling, the s o l i d  hydrogen 
volume can be s ized t o  provide s u f f i c i e n t  cooling fo r  both functions.  

The heat  of sublimation plus the c rys t a l  hea t  load implies a 
hydrogen sublimation r a t e  which i n  a l l  probabi l i ty  is not matched t o  
the required gaseous hea t  removal capacity i n  the  70°K or 100°K tempera- 
t u r e  range required of the co l l ec to r  walls. Consequently, the g rea t e r  
of the t ~ o  hea t  leads w i l l  size the mass of s o l i d  hydrogen needed fo r  
a given f l i g h t  time, and thus the coolant system w i l l  have excess capacity 
fo r  the  lesser hea t  load. This hea t  capacity matching poses problems i n  
both s i t u a t i o n s ;  i.e., i f  the co l lec tor  wall  hea t  load requi res  the 
g r e a t e s t  hydrogen gas flow, a hea t  load  beyond that supplied by the 
c r y s t a l  must be imposed on the s o l i d  hydrogen t o  maintain the desired 
sublimation rate. On the  other  hand, i f  the c rys t a l  heat load is high, 
the gas flow t o  the co l lec tor  may be more than required; t h i s  would 
r e s u l t  i n  a low col lec tor  wall  temperature which could begin t o  a c t  as 
a condenser, thereby inval idat ing the c rys t a l  sensor measurement. I f  
such is  the case, an  a r t i f i c i a l  hea t  l o a d  must be imposed on the subliming 
gas before it reaches the co l l ec to r  section. 

From Section V, the sample gas cooling load plus the  hea t  load due 
t o  super insu la t ion  was calculated t o  be 11.38 m i l l i w a t t s .  Hydrogen gas 
provides 80 cal/gm cooling capacity between 70°K and 100°K; thus,  the 
required hydrogen sublimation r a t e  for  co l l ec to r  cooling is 

The c rys t a l  heat  load from Section V was  1.037 mi l l iwat t s  with 
negl ig ib le  hea t  loss  due t o  insulat ion.  
for  the  c r y s t a l  is thus 

The required sublimation r a t e  

gm/sec. (D-9) 
& =  1.037 mi l l iwat t  - - 2 .6  

10-6 
125 cal/gm c rys t a l  
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The col lector  cooling therefore  requires  the g rea t e r  hydrogen gas 
flow; however, there  should be no problem i n  providing the desired sub l i -  
mation r a t e  by proper design o f  the super insu la t ion  sec t ion  surrounding 
the s o l i d  hydrogen (Figure D - 2 ) .  

Superinsulation 

H2 at 13'K 

Precooling 
Flexible 
Con tact 

' So 1 i d Hydrogen 
'Heat Conducting Rod and Discs 

Quartz Crystal Microbalance 

Figure D-2.  Hydrogen Sublimation Coolant System 

The sublimed gas can be c i rcu la ted  through an intermediate layer  
of the superinsulat ion thus providing the proper temperature grad ien t  i n  
the superinsulat ion for  the desired sublimation r a t e ,  and a t  the same 
time, warming the hydrogen t o  7 0 ° K  before enter ing the co l lec tor  coolant 
sec t ion .  
i s  

TE? required volume of s o l i d  hydrogen f o r  a given f l i g h t  time 
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For the hypothetical  mission considered i n  t h i s  repor t  t = 3.57 x l o 5  
seconds and the required volume is 140.5 cm3. 

The maintenance of a constant vapor pressure over the so l id  hydrogen 
should pose no problems during the vehicle f l i g h t .  
a r e  r ad ia t ion  loads and superinsulation losses  and a re  invar ian t  with 
t h e  and vehic le  a l t i t u d e ;  thus,  the sublimation r a t e  w i l l  remain approxi- 
mately constant during the f l i g h t ,  and an  o r i f i c e  i n  the  exhaust l i n e  can 
be s ized  t o  se t  the desired vapor pressure f o r  the mass flow r a t e .  

The major hea t  loads 

Since the co l lec tor  i s  evacuated before launch, the hea t  loads on 
the  iaunch pad are essen t i a l ly  the sme 3s the f l i g h t  conditions. $fain- 
ta in ing  the sub-atmospheric vapor pressure that is required i f  the hydrogen 
is t o  remain i n  a so l id  phase presents a problem, however, during any 
unattended hold periods,  s ince  the subliming hydrogen cannot be conven- 
i e n t l y  exhausted by the atmosphere as i t  can i n  f l i g h t .  Neither can the 
system simply be capped of f  a f t e r  evacuation s ince  a 1 0 - l i t e r  volume would 
be required t o  hold the  vapor pressure below 54 t o r r  during a 12-hour hold 
period . 

An a l t e r n a t e  approach would be a l iqu id  f i l l  and l iqu id  phase boi l -  
o f f  to the atmosphere during the ground hold period followed by s o l i d i f i c a -  
t i on  a t  f l i g h t  a l t i t u d e  as the  l iquid hydrogen is  exposed t o  vacuum 
conditions. Adverse experience with hydrogen vent l i n e  plugging by 
freezing a t  high a l t i t u d e  would indicate  that extreme care would need t o  
be taken i n  the  design and prototype development t o  avoid losing a l l  the 
l iqu id  before any s o l i d i f i c a t i o n  i n  the hydrogen container takes place. 

The most r e l i a b l e  hydrogen system would require  continuous vacuum 
pumping during the ground hold p e r i o d  followed by o r i f  ice-controlled 
venting to  vacuum while i n  f l i g h t .  
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